
4408 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Distributionally Robust State Estimation for
Nonlinear Systems
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Abstract—Uncertainties unavoidably exist in modeling for non-
linear systems: state equation, measurement equation, and/or
noises statistics might be uncertain. Such model mismatches ren-
der the performance of nominally optimal state estimators being
deteriorated or even unsatisfactory. Therefore, robust filters that
are insensitive to modeling uncertainties have to be designed. The
challenge is to quantitatively describe the uncertainties and then
design accordingly efficient robust filters. Since uncertainties in
nominal models make prior state distributions and likelihood dis-
tributions uncertain as well, this article proposes a distributionally
robust particle filtering framework for nonlinear systems subject to
modeling uncertainties. Specifically, we use worst-case prior state
distributions (near the nominal prior state distributions) to gener-
ate prior state particles and/or determine their weights. Likewise,
worst-case likelihood distributions (near the nominal likelihood
distributions) are used to evaluate the worst-case likelihoods of
prior state particles at given measurements. The “worst-case”
scenario is quantified by entropy of distributions, and maximum
entropy distributions are found in balls centered at nominal distri-
butions with radii defined by statistical similarity measures such
as moments-based similarity, Wasserstein distance, and Kullback-
Leibler divergence. We prove that Gaussian approximation filters
(e.g., unscented/cubature/ensemble Kalman filter) are distribution-
ally robust in the sense that they use maximum entropy prior
state distributions and maximum entropy likelihood distributions.
Moreover, we show that the distributionally robust particle fil-
tering framework provides a likelihood evaluation method for
general nonlinear measurement equation with non-additive and
non-multiplicative measurement noises. At last, we discuss mea-
surement outlier treatment strategies in the distributionally robust
particle filtering framework.

Index Terms—Approximated Bayesian inference, Kullback-
Leibler divergence, maximum entropy, particle filter, sequential
Monte Carlo, Wasserstein distance.

I. INTRODUCTION

R ESEARCH on state estimation for nonlinear systems is
lastingly active in several academic communities such

as target tracking [1], power systems [2], reliability engineer-
ing [3], geodesy [4], sensor network [5], control and automa-
tion (e.g., robotics [6]), and astronautics [7]. Typical treatment
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frameworks include: 1) linearization methods, e.g., extended
Kalman filters [8] and Takagi–Sugeno fuzzy approximation [9],
2) Gaussian approximation methods [10] including unscented
Kalman filters [11], cubature Kalman filters [12], ensemble
Kalman filters [13], etc., and 3) approximated Bayesian infer-
ence methods such as variational Bayesian inference [14], [15],
[16], [17] and sequential Monte Carlo methods (a.k.a. particle
filters) [18], [19], [20], [21]. All these methods try to find the
posterior state distribution, at every time step, conditional on
the past measurements. Some key points can be summarized
as follows: 1) Particle filters are optimal methods in the sense
that they can compute the exact posterior state distributions
if given sufficiently many particles [22]; 2) Ensemble Kalman
filters are approximation methods of particle filters, which adopt
the closed-form Kalman iterations to reduce the computational
complexity at the cost of scarifying the approximation accuracy
for the posterior state distributions [13]; 3) Cubature Kalman
filters and unscented Kalman filters are special cases of ensemble
Kalman filters and they use only a very limited number of
particles (which are called sigma points) to further reduce the
computational complexity.

Linearization methods and Gaussian approximation methods
are doubted for their incapability of capturing severe nonlinear-
ities, while approximated Bayesian inference methods are criti-
cized for their high computational burdens. However, continuous
improvement in computation powers of modern microproces-
sors/computers is reducing such criticisms on approximated
Bayesian inference methods and encouraging signal processing
practitioners to implement these methods for higher estimation
accuracy. On this basis, sequential Monte Carlo methods (i.e.,
particle filters) are of more interest because solving functional
optimization problems in variational Bayesian inference is theo-
retically challenging and therefore additional assumptions, e.g.
parameterized function representation and mean field approxi-
mation [23], are required.

Over the years, tremendous efforts have been made to perfect
particle filters, especially in designing efficient sampling and
resampling techniques [18], [24], [25], [26]. However, virtually
all of the past literature assumes that the state equation and
measurement equation are accurate. This assumption is sus-
pect because uncertainties are unavoidable in modeling; i.e.,
nominal models designed by scientists/engineers are not guar-
anteed to be exactly the same as the true governing models.
Such uncertainties may be incurred by oscillating but unknown
values of elements in circuits (e.g., resistors/inductors influenced
by thermal/electromagnetic noises), by uncontrollable factors
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in model identification (e.g., numerical errors in parameter
estimation; mismatched model assumptions), etc. Therefore,
uncertainty-aware particle-based state estimation solutions have
to be studied.1 There are two philosophies in statistics, optimiza-
tion, and also engineering to cope with uncertainties. The one
is to reduce such uncertainties by, e.g., jointly estimating the
true values of the uncertain factors whenever it is possible [32],
[33], [34], [35], [36], whereas the other is to tolerate the uncer-
tainties by, e.g., designing robust solutions that are insensitive
to them [37], [38], [39], [40], [41]. The former is referred to
as adaptive methods, and the latter is termed robust methods.
Specifically, in the state estimation literature (for linear systems),
adaptive methods include unknown-input Kalman filters [34],
adaptive Kalman filters [35], etc., while robust methods contain,
e.g., robust Kalman filters [42], [43] and distributionally robust
state estimators [39], [40]. Since not all uncertain factors can
be correctly characterized, quantitatively modeled, and exactly
estimated, in general, robust solutions are attractive. Distri-
butionally robust optimization theory, an offspring of robust
statistics and optimization theories, is a mainstream framework
dealing with modeling uncertainties. It is currently popular in
operations research [44], machine learning [38], [45], systems
control [46], to name a few. When some statistical information
of uncertain factors are known in prior, distributionally robust
optimization methods are preferable over classical robust opti-
mization methods which only take into account possible values
that the uncertain factors can take. This is because distributional
information can be utilized to counteract conservativeness, to
some extent [47].

In this article, distributionally robust optimization theory is
leveraged to robustify particle filters. This is because particle
filters are Bayesian statistical methods, and therefore, natural
to be discussed in “distributional” contexts.2 When a nominal
state equation is not guaranteed to be exactly the same as
the true one, we argue that the associated nominal prior state
distributions, which are represented by weighted particles that
are generated from this nominal state equation, are different from
the true prior state distributions as well. Therefore, we propose
to find the worst-case prior state distributions near the nominal
prior state distributions, and use these worst-case distributions
as surrogates to generate new prior state particles and/or up-
date their weights. On the other hand, when the measurement
equation is inexact, the likelihoods of the prior state particles
cannot be exactly evaluated either. Likewise, we suggest finding
worst-case likelihood distributions for prior state particles to
evaluate their likelihoods. Intuitively, we recall the Bayesian
posterior estimation principle: p(x|y) ∝ p(y|x) · p(x). Hence,
if we trust more the prior distribution p(x) and doubt the
exactness of the likelihood distribution p(y|x), we should let
p(y|x) be noninformative/uncertain and make main use of p(x).

1Although there exist robustified extended Kalman filters [27], [28], robusti-
fied cubature Kalman filters [29], [30], and robustified Gaussian filters [31] for
uncertain nonlinear system models subject to, e.g., non-Gaussian measurement
noises, they are based on sub-optimal Gaussian approximation filters which
cannot sufficiently handle nonlinearities.

2The term “distributional” means probability-distribution-related. One should
differentiate it with another term “distributed” in engineering literature.

Conversely, we should let p(x) be noninformative/uncertain and
mainly utilize p(y|x).

The “uncertainty” of distributions can be quantified by their
entropy [48], [49]. A large entropy value implies that the
distribution is not concentrated/informative,3 and instead scat-
tered/noninformative; i.e., we are less certain about happen-
ings. Therefore, an eligible method to quantify the “worst-
case” scenario is to use entropy; it is due to the principle
of maximum entropy: “the probability distribution which best
represents the current state of knowledge about a system is
the one with largest entropy [53]”. The principle of maximum
entropy is also popular in robust Bayesian methods [50], [51],
[54], especially in choosing robust prior distributions. To be
specific, according to [51, p.229], flat-tailed priors and non-
informative priors can robustify a Bayesian statistical method.
In fact, maximum entropy distributions tend to be flat-tailed
because maximizing the entropy of a variable (n.b., not fixed)
distribution admits minimizing the Kullback–Leibler divergence
of this distribution from a uniform distribution [cf. (39)], and
uniform distributions are most flat-tailed. In this article, we
utilize classical statistical metrics and divergences, such as
the Wasserstein metric and the Kullback-Leibler divergence,
to construct balls containing a family of distributions centered
at a nominal prior state distribution or at a nominal likelihood
distribution. Then, we find maximum entropy distributions in
the balls to generate new prior state particles and/or update
their weights, and to evaluate the worst-case likelihoods of
these prior state particles. As a result, the worst-case poste-
rior state particles are immediate to be obtained by particle
filters.

The contributions of this article can be summarized as follows.
1) We propose a robustification scheme for particle filters.

Specifically, in implementing a particle filter, we use
worst-case (i.e., maximum-entropy) prior state distribu-
tion near the nominal prior state distribution to generate
new prior state particles and/or update their weights, and
use worst-case (i.e., maximum-entropy) likelihood distri-
bution near the nominal likelihood distribution to evaluate
the worst-case likelihoods of these prior state particles. For
details, see Sections II and IV.

2) We derive maximum entropy distributions in balls cen-
tered at nominal distributions with radii defined by the
Wasserstein distance and the Kullback-Leibler diver-
gence. For details, see Section III-B and III-C, especially
Theorems 3, 4, 5, and 6.

3) We show that this robustification scheme serves yet a new
resampling strategy against particle degeneracy. In detail,
maximum entropy distributions tend to have uniform prob-
ability for each support point, and therefore, in particle
filter, particles tend to have equal weights. For details, see
Section IV-A, especially (39) and (40).

4) We show that the proposed robustification scheme of-
fers a universal likelihood evaluation method for prior
state particles when measurement equation is driven by

3Maximum-entropy distributions tend to be noninformative [50, Section
2.3], [51], [52].
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non-additive and non-multiplicative noises. For details,
see Section IV-B, especially Methods 4 and 5.

5) We illustrate that Gaussian approximation state estimators
are distributionally robust. For details, see Section III-A,
especially Corollary 1.

6) We provide a measurement outlier identification and
treatment method for particle filters. For details, see
Section IV-C.

Notations: Let Rd denote the d-dimensional Euclidean space,
L1 the absolutely integrable function space, and l1 the absolutely
summable vector space. We use Px to denote the distribution of
the random vector x and Ex its expectation. Let the probability
density function of x be p(x). Let Y k := {y1,y2, . . .,yk}
denote the measurement set up to and including the time k.
Let δx0

(x) be the Dirac delta function: δx0
(x) =∞ if x = x0

and 0 otherwise;
∫
δx0

(x)dx = 1. We use F T to denote the
transpose of a matrix F . For a given integer N , we let [N ] :=
{1, 2, 3, . . ., N} denote a running index set.

II. PROBLEM FORMULATION

Consider a nonlinear system model{
xk = fk(xk−1,wk−1)
yk = hk(xk,vk)

(1)

in which xk ∈ Rn is the state vector, yk ∈ Rm is the measure-
ment vector, wk−1 ∈ Rp is the process noise vector, vk ∈ Rq

is the measurement noise vector, fk(·, ·) is the state evolu-
tion function, and hk(·, ·) is the state measurement function;
k = 1, 2, 3, . . . denotes the discrete time index. We assume that
xk, yk, wk, and vk have finite second moments, and fk(·, ·)
and hk(·, ·) have finite operator norms (i.e., bounded inputs
give bounded outputs). The task is to estimate the hidden state
vector xk based on the measurement set Y k. In this article,
we exclusively consider sequential Monte Carlo methods (i.e.,
particle filters) as explained in Introduction I.

The first issue is that the nominal nonlinear system model (1)
might be uncertain [55, Chapter 1], [56, Chapter 9]; see Ap-
pendix A in the online supplementary materials for the concept
of “model uncertainty”. Specifically, for given k, at least one of
the state evolution function fk(·, ·), state measurement function
hk(·, ·), and types and/or parameters of distributions of wk and
vk might be inexact. In designing robust state estimation solu-
tions that are insensitive to these uncertainties, the challenge is
quantifying and bounding such modeling uncertainties. Special
cases when (1) takes linear forms have been discussed in the
author’s previous works [39], [40]. In this article, we exclusively
investigate non-degenerate nonlinear cases. As measurements
yk sequentially arrive, we focus on a time-incremental state
estimation problem, i.e., studying the problem at every k given
the measurement setY k [19], [21]. Hence, it suffices to examine
the following single-stage Bayesian inference problem:⎧⎨

⎩
z ∼ Pz

x = f(z,w)
y = h(x,v)

(2)

where z := xk−1|Y k−1 represents the conditional posterior
state at k − 1 given the past measurement set Y k−1, x := xk

the state at k, y := yk the measurement at k, w := wk−1 the
process noise at k − 1, and v := vk the measurement noise at
k; nominal distributions Pz , Pw, and Pv are known; nominal
nonlinear functions f(·, ·) and h(·, ·) are known as well. The
time index k is dropped to avoid notational clutter. In particle
filters, all involved distributions Pz , Pw, Pv , Px, and Py are
represented/approximated by particles; they are discrete distri-
butions. Specifically, for example, p(z) :=

∑Nz

i=1 uzi · δzi(z)
where Nz is the number of particles; particles zi are sampled
from Pz and uzi are weights. Since uncertain state equation
(resp. uncertain measurement equation) would let the true prior
state distribution Px (resp. true likelihood distribution Py|x)
deviate from the nominal prior state distribution P̄x (resp.
nominal likelihood distribution P̄y|x), particle filters can be
robustified by considering that prior state distributions (resp.
likelihood distributions) are uncertain, and finding worst-case
state priors (resp. likelihoods). To be specific, we propose to
find the worst-case prior state distribution near the nominal prior
state distribution P̄x to generate worst-case prior state particles
xj and/or update their weights. Likewise, worst-case likelihood
distributions near the nominal ones P̄y|xj are leveraged to eval-
uate the worst-case likelihoods of prior state particles xj at the
measurement y. The principle of maximum entropy supports us
to explore and exploit the maximum entropy distribution when
given limited distributional information. Since the limited (i.e.,
inexact) distributional information of prior state is conveyed in
the nominal P̄x, the following optimization problem has to be
solved:

max
p(x)∈L1

∫
−p(x) ln p(x)dx

s .t .

{
D
(
Px, P̄x

) ≤ θ∫
p(x)dx = 1

(3)

where the objective is the entropy of Px whose density is p(x),
and D(Px, P̄x) is a statistical similarity measure between Px

and P̄x. When Px is also assumed to be discrete [i.e., p(x) :=∑M
j=1 uxjδxj (x)], the following alternative problem needs to

be solved:

max
p(x)∈l1

M∑
j=1

−p (xj
)
ln p

(
xj
)

s .t .

{
D
(
Px, P̄x

) ≤ θ∑
j p
(
xj
)

= 1,

(4)

where p(xj) := uxj denotes the weight of xj . Note that the
support sets of the uncertain prior p(x) :=

∑M
j=1 uxjδxj (x)

and the nominal prior p̄(x) :=
∑N

i=1 uxiδxi(x) may not be the
same: p(x) is supported on {xj} for j ∈ [M ], while p̄(x) is
supported on {xi} for i ∈ [N ]. We call {xi}i∈[N ] the nominal
prior state particles and {xj}j∈[M ] the worst-case prior state
particles. Suppose that p∗(x) solves (3). The worst-case prior
state particlesxj can be sampled from p∗(x). If p∗(x) solves (4),
xj are worst-case prior state particles whose weights are p∗(xj),
respectively. The philosophy handling inexact likelihood infor-
mation conveyed in nominal likelihood distributions p̄(y|xj) :=∑R

r=1 uyr |xjδyr |xj (y) keeps consistent. Specifically, for every
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prior state particle xj , we need to solve

max
py|xj (y)∈L1

∫
−py|xj (y) ln py|xj (y)dy

s .t .

{
D
(
Py|xj , P̄y|xj

) ≤ θ∫
py|xj (y)dy = 1

(5)

or its discrete version

max
py|xj (y)∈l1

T∑
t=1

−py|xj

(
yt
)
ln py|xj

(
yt
)

s .t .

{
D
(
Py|xj , P̄y|xj

) ≤ θ∑
t py|xj (yt) = 1.

(6)

Likewise, the support sets of the uncertain likelihood distribu-
tions py|xj (y) :=

∑T
t=1 uyt|xjδyt|xj (y) and the nominal likeli-

hood distributions p̄y|xj (y) :=
∑R

r=1 uyr |xjδyr |xj (y) may not
be the same: py|xj (y) is supported on {yt} for t ∈ [T ], while
p̄y|xj (y) is supported on {yr} for r ∈ [R]. We call {yr}r∈[R] the
nominal likelihood particles and {yt}t∈[T ] the worst-case likeli-
hood particles. Suppose that p∗y|xj (y) solves (5). The worst-case

likelihood of the prior state particle xj given the measurement y
can be evaluated by p∗y|xj (y). Instead, if p∗y|xj (y) solves (6) and

one ofyt is the same as the given measurementy, the worst-case
likelihood of the prior state particle xj given the measurement
y can be evaluated by p∗y|xj (yt). This is possible because we
can let the collected y be a supporting point to solve (6); i.e.,
y ∈ {yt}t∈[T ]. Note that the support set {yt}t∈[T ] is specified
by filter designers.

The second issue is to evaluate likelihoods of particles xj

given the measurement y when the measurement noise v is
non-additive and non-multiplicative. If the measurement noise is
additive [i.e., y = h(x) + v] or multiplicative [i.e., y = h(x) ·
v], the evaluation method is straightforward. For this reason,
virtually all of the existing state-estimation literature tacitly
takes the premise of additive/multiplicative measurement noises,
which, however, is not always tenable in practice. This article,
therefore, also aims to study a likelihood evaluation method for a
general nonlinear measurement equation with non-additive and
non-multiplicative measurement noises. This can be done by (5)
and (6), in a robust (i.e., worst-case) sense. To be specific, we
can first use the measurement equation yr = h(xj ,vr), where
vr is a particle sampled from Pv , to generate nominal likelihood
particles {yr}r∈[R] for the prior state particle xj , and then use
(5) and (6) to evaluate the worst-case likelihood of xj at the
measurement y.

The third issue is to identify possible outliers in measurements
and take actions to remove/attenuate them [40]. Motivated by
the M-estimation theory [37], we claim that this can be done
by evaluating the likelihoods of prior state particles at the given
measurement: if the largest likelihood of the prior state particles
is smaller than a threshold (e.g., 5%), we treat this measurement
as an outlier because none of these prior state particles can
possibly generate this measurement. Then, this measurement
can be directly trashed and all prior state particles directly
become posterior (cf. re-descending influence functions, e.g.,
Hampel’s [37, Eq. (4.90)], in M-estimation). This measurement
can also be replaced by the nearest likelihood particle generated
by the prior state particle that has the largest likelihood (cf.

monotonic influence functions, e.g., Huber’s [37, Eq. (4.53)], in
M-estimation).

To the core, this article needs to find solutions of (3), (4), (5),
and (6). In the following sections, we first explicitly choose eli-
gible forms of the statistical similarity measureD(·, ·). Then, we
find maximum entropy distributions for generating worst-case
prior state particles and evaluating their worst-case likelihoods.
Third, we identify and handle measurement outliers. At last, the
overall distributionally robust state estimation framework for
nonlinear systems is outlined.

III. FIND MAXIMUM ENTROPY DISTRIBUTIONS

Mathematically, (3) and (5) are the same problem, so are (4)
and (6). The former is a maximum entropy problem for a contin-
uous distribution family given a discrete reference distribution,
while the latter is a maximum entropy problem for a discrete
distribution family given a discrete reference distribution. There-
fore, for notational simplicity, we investigate a unified form for
(3) and (5):

max
p(x)∈L1

∫
−p(x) ln p(x)dx

s .t .

{
D[p(x), q(x)] ≤ θ∫

p(x)dx = 1

(7)

where q(x) =
∑N

i=1 uxiδxi(x) is a N -point discrete reference
distribution; q(x) is the density function of Qx. Likewise,
supposing p(x) =

∑M
j=1 uxjδxj (x) is a M -point discrete dis-

tribution (which is the density function of Px), the unified form
for (4) and (6) is

max
p∈l1

M∑
j=1

−pj ln pj

s .t .

{
D[p, q] ≤ θ∑M

j=1 pj = 1

(8)

where pj := uxj , qi := uxi , p := [p1, p2, . . ., pj , . . .pM ]T , and
q := [q1, q2, . . ., qi, . . .qN ]T . In (8), M might be equal to N but
this is not always the case. Besides, even when M = N , Px and
Qx can be supported on different discrete sets; the former is
{xj}j=1,2,...,M and the latter is {xi}i=1,2,...,N .

Therefore, it suffices to consider only (7) and (8) in this
section. In state-of-the-art distributionally robust optimization
literature, the most commonly adopted statistical similarity
measures are moments-based similarity [57], [58], Wasserstein
distance [38], and φ-divergence [59]. We find the solutions to
(7) and (8) based on these three statistical similarity measures,
respectively. In the following sections, to avoid notational clut-
ter, we no longer emphasize that a density function is in L1 or a
mass function is in l1; they are implicitly admitted instead.

A. Solutions Using Moments-Based Similarity

Moments-Based statistical similarity claims that two random
vectors are similar (in distribution) if they have similar moments
up to the order ofO (e.g., whenO = 2, two random vectors have
the same mean and covariance). This measure is also widely used
in information theory [49, Chapter 11]. Note that the moments of
the discrete reference distribution Qx can be estimated from its
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particles (using any eligible approaches, e.g., weighted sample
mean and weighted sample covariance). Suppose the first two
sample moments of Qx are given by μ̂x :=

∑N
i=1 uxi · xi and

Σ̂x :=
∑N

i=1 uxi · (xi − μ̂x)(x
i − μ̂x)

T , respectively.
1) Solution to (7): The theorem below gives the continuous

maximum entropy distribution when the first two moments are
specified.

Theorem 1: If the first two moments of an absolutely con-
tinuous distribution Px are μ̂x and Σ̂x, respectively, then the
maximum entropy of Px is obtained by a Gaussian with mean
μ̂x and covariance Σ̂x.

Proof: See [49, Theorem 9.6.5] or [60, Theorem 4.1.2]. Note
that a Gaussian distribution is translation-invariant, and absolute
continuity of Px implies the existence of its density almost
everywhere. �

Theorem 1 can be extended to take into account higher order
moments; see [49, Section 11.1]. We do not consider moments
with orders equal to or higher than 3 because they are tensors for
multivariate problems, and they are unnecessary for this article’s
contexts. Theorem 1 reveals the distributional robustness of the
Gaussian approximation state estimators.

Corollary 1: The Gaussian approximation state estimators
for nonlinear systems are distributionally robust in the sense
that they use maximum entropy distributions for prior states and
their likelihoods. �

Corollary 1 implies that when the nominal nonlinear system
model is uncertain, Gaussian approximation filters, such as
unscented Kalman filter (UKF), cubature Kalman filter (CKF),
and Ensemble Kalman filter (EnKF), might outperform general
particle filters. The benefit of such Gaussian approximation is
that the induced filters (UKF, CKF, EnKF, etc.) are, strictly
speaking, no longer computationally-intensive sequential Monte
Carlo methods because they do not store prior state particles and
explicitly evaluate their likelihoods. Instead, states and measure-
ments are assumed to be marginally Gaussian and also jointly
Gaussian, and therefore, closed-form solutions (i.e., canonical
Kalman iterations) are applicable, which are computationally
attractive.

In this sense, the philosophy of Gaussian approximation can
also be applied in general particle filtering procedure. Specifi-
cally, we first sample (worst-case) prior state particles from the
found maximum-entropy Gaussian prior distribution, and then
evaluate their likelihoods using the found maximum-entropy
Gaussian likelihood distributions. Finally, the posterior state
particles can be generated. In fact, it is also possible to directly
discover a discrete maximum-entropy Gaussian distribution sup-
ported on {xj}j=1,2,...,M without sampling from a continuous
Gaussian.

2) Solution to (8): In this subsection, we discuss the discrete
maximum entropy distribution that is supported on the discrete
set {xj}j=1,2,...,M , when the first two moments μ̂x and Σ̂x are
given.

Theorem 2: Among all discrete distributions supported on
{xj}j=1,2,...,M with first two moments μ̂x and Σ̂x, the maxi-
mum entropy distribution is

pj = exp
{
−1− γ − λTxj − (xj − μ̂x

)T
ΛT

(
xj − μ̂x

)}
,

(9)

∀j ∈ [M ], where γ ∈ R1, λ ∈ Rn, and Λ ∈ Rn×n are deter-
mined by the following three equalities⎧⎪⎨

⎪⎩
∑M

j=1 pj = 1,∑M
j=1 x

j · pj = μ̂x,∑M
j=1

(
xj − μ̂x

) (
xj − μ̂x

)T · pj = Σ̂x.

(10)

Proof: Applying the Lagrange multiplier method to (8), the
statements are immediate. �

Theorem 2 gives the worst-case weights of particles xj ; i.e.,
uxj = pj . Therefore, particles xj together with their weights
uxj represent a worst-case prior state distribution [cf. (4)] or a
worst-case likelihood distribution [cf. (6)]. The nonlinear root-
finding problem (10) is, however, complicated even when only
the first two moments are considered and only equalities are
involved. If higher order moments and inequalities exist in (8),
the complexity would be inconceivable (due to, e.g., tensors).
However, the solution of (10) is just theoretically meaningful.
In practice, when we take Gaussian assumption, it is pointless to
store particles and evaluate their likelihoods; we prefer to apply
canonical closed-form Kalman iterations.

B. Solutions Using Wasserstein Distance

The origin of the Wasserstein distance (i.e., Kantorovich-
Rubinshtein metric) was inspired by the optimal transport the-
ory [61]; see also [62]. It is currently of most interests in
operations research [63] and machine learning [38], [64]. For
any two distributions Px and Qx, the Wasserstein distance is
defined as [61], [63]

W(Px,Qx) := inf
ΠxP ,xQ

∫
‖xP − xQ‖Π(dxP , dxQ) (11)

where xP and xQ are random vectors associated with Px and
Qx, respectively; ΠxP ,xQ

is any possible joint distribution of
(xP ,xQ) whose marginals are Px and Qx; ‖ · ‖ denotes any
possible vector norm. The benefit to use the Wasserstein distance
is that it does not require the two involved distributions to have
the same support. In other words, it is possible that either Px

or Qx is continuous and the other one is discrete. Besides,
the Wasserstein distance can also implicitly take higher-order-
moment information of random vectors into consideration, un-
like the Gaussian assumption that only focuses on the first two
moments. In this article, as claimed, Qx is discrete and supported
on {xi}i=1,2,...,N .

1) Solution to (7): Suppose Px and ΠxP ,xQ
are abso-

lutely continuous, and the density of ΠxP ,xQ
is π(xP ,xQ);

π(xP ,xQ) = I(xQ|xP )p(xP ) where I(xQ|xP ) is the con-
ditional density. We solve (7) using the Wasserstein distance.
Hence, (7) can be written as

max
p(x)

∫
−p(x) ln p(x)dx

s .t .

⎧⎨
⎩ inf

π(xP ,xQ)

∫∫
‖xP − xQ‖π(xP ,xQ)dxPdxQ ≤ θ∫

p(x)dx = 1.
(12)

Note that p(xP ) = p(x) and p(xQ) = q(x).
We first study the constraint infπ(xP ,xQ)

∫∫ ‖xP −
xQ‖π(xP ,xQ)dxPdxQ ≤ θ. The infimum optimization
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Fig. 1. The whole rectangular region C is divided into 9 sub-regions C1,
C2,..., and C9 whose centres (red dots) are x1, x2,..., and x9, respectively.
Boundaries of sub-regions are marked by dashed lines.

problem on the left hand side of this constraint is functional and
infinite-dimensional. Therefore, we aim to transform it into a
vector-valued and finite-dimensional equivalent.

Lemma 1: The infinite-dimensional optimization problem
infπ(xP ,xQ)

∫∫ ‖xP − xQ‖π(xP ,xQ)dxPdxQ is equivalent
to a finite-dimensional optimization problem

max
λ

∫
p(x) min

i∈[N ]

{‖x− xi‖ − λi

}
dx+

N∑
i=1

qiλi, (13)

where λ := [λ1, λ2, . . ., λN ]T and ∀i ∈ [N ], λi ∈ R1.
Proof: See Appendix B in the online supplementary materi-

als. �
We identify that (13) is a continuous-region partitioning

problem for optimal transport [65]; intuitions can be found in
Appendix B. Specifically, (13) is equivalent to

max
λ

∫
p(x)σ(x)dx+

N∑
i=1

qiλi

s .t .

⎧⎨
⎩

σ(x) = mini∈[N ]{‖x− xi‖ − λi},
≤ ‖x− xi‖ − λi, ∀i ∈ [N ],

σ(x) ≥ 0,

(14)

which has the same form with [65, Eq. (5)]. Note that in [65, Eq.
(4)], an auxiliary variable twas used, which introducedλi to [65,
Eq. (5)]. (In [65], if t were cancelled, λi would disappear.) Note
also that in [65], a generic measure dA was used. In the contexts
of this article, it is instantiated to dA := p(x)dx. Therefore, for
any given p(x) and q(x) =

∑
i qiδxi(x), an optimal partition

exist [65]. For illustration, see Fig. 1, in which we suppose
that p(x) and q(x) are distributed over the whole rectangular
region. However, q(x) is discrete (N = 9), and supported on
nine red dots. The optimal solution states that the optimal
transport plan is to move all density of p(x) in Ci to its centre
xi. In other words, any density outside of Ci will strictly not
be accepted at xi. Intuitively, this renders

∫
I(xi|x)p(x)dx =

qi, ∀i ∈ [N ], and I(xi|x) is in fact an indicator: I(xi|x) = 1 if
x ∈ Ci and I(xi|x) = 0 otherwise (cf. Appendix B). Therefore,∫

Rn p(x)dx =
∑N

i=1

∫
Ci

p(x)dx =
∑N

i=1 qi = 1.
Lemma 1 transforms (12) to

max
p(x)

∫
−p(x) ln p(x)dx

s .t .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
λ

∫
p(x) min

i∈[N ]

{‖x− xi‖ − λi

}
dx+

N∑
i=1

qiλi ≤ θ∫
p(x)dx = 1.

(15)

The solution to problem (15) is given in the theorem below.
Theorem 3: The maximum entropy distribution solving (15)

is

p(x) = exp

{
−v0 min

i∈[N ]

{‖x− xi‖ − λi

}− v1 − 1

}
(16)

where v0 ∈ R1, v1 ∈ R1, and λi ∈ R1, ∀i solve the following
convex and smooth problem (n.b., almost-everywhere smooth
in terms of λi; non-smooth only on zero-measure boundaries):

min
v0,v1,λ

v0 ·
(
θ −∑N

i=1 λiqi

)
+ v1+∫

exp

{
−v0 min

i∈[N ]

{‖x− xi‖ − λi

}− v1 − 1

}
dx

s .t . v0 ≥ 0,
(17)

where λ := [λ1, λ2, . . ., λN ]T .
Proof: See Appendix C in the online supplementary materi-

als. �
Suppose that v∗0, v∗1, and λ∗ solve (17). We claim that p(x) in

(16) admits

p(x) = exp
{−v∗0 · {‖x− xi‖ − λ∗i

}− v∗1 − 1
}
, ∀x ∈ Ci,

(18)
where the sub-region/sub-space Ci is defined by

Ci :=
{
x ∈ Rn|‖x− xi‖ − λ∗i ≤ ‖x− xj‖ − λ∗j

}
, ∀j �= i.

Note that {Ci}i=1,2,...,N are collectively exhaustive and mutu-
ally exclusive; Ci

⋂
Cj = ∅, ∀i �= j and Rn =

⋃N
i=1 Ci.

Since (17) is convex4 and smooth,5 it can be solved using
any first-order method (e.g., projected gradient descent). Let the
objective of (17) be fW−C(v0, v1,λ); the subscripts “W” is for
“Wasserstein” and “C” for “Continuous”. By letting g(x,λ) :=
mini∈[N ]{‖x− xi‖ − λi}, the gradients of fW−C(v0, v1,λ)
with respect to v0, v1, and λi are, respectively,
∂fW−C
∂v0

=θ−
N∑
i=1

λiqi−
∫

Rn

g(x,λ) exp{−v0g(x,λ)−v1−1}dx,

(19)

∂fW−C
∂v1

= 1− ∫Rn exp{−v0g(x,λ)− v1 − 1}dx, (20)

and
∂fW−C
∂λi

= −v0qi + v0

∫
Ci

exp{−v0g(x,λ)− v1 − 1}dx,

4In the Lagrange duality sense, dual problems of any primal problems are
always concave (resp. convex), no matter whether the primal problems are
convex (resp. concave) or not [66, Chapter 5]. One can verify this point on (17)
themselves by the definition of convexity. Note that for every two bounded func-
tions f1 and f2 that have the same support,min(f1 + f2) ≥ min f1 +min f2.

5Non-smoothness over zero-measure subsets does not matter. Whenever
necessary, one can use sub-gradients instead.

Authorized licensed use limited to: National University of Singapore. Downloaded on September 17,2022 at 06:34:07 UTC from IEEE Xplore.  Restrictions apply. 



4414 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

= −v0qi + v0

∫
Ci

exp{−v0(‖x− xi‖ − λi)− v1 − 1}dx.
(21)

When the optimality reaches (i.e., all gradients vanish), (19)
implies that the Wasserstein distance is strictly equal to the
prescribed budget θ, (20) indicates that p(x) in (16) is indeed a
density that is integrated to unit, and (21) means that a partition
for optimal transport exists (i.e.,

∫
Ci

p(x)dx = qi). The projec-
tion step is straightforward in the gradient descent procedure:
whenever v0 < 0, let v0 = 0.

In the projected gradient descent procedure, all involved in-
tegrals can be approximated by numerical methods, e.g., global
adaptive quadrature [67] or Monte Carlo integration [68], [69],
whichever is easier to be implemented for specific problems.

2) Solution to (8): Suppose Px is also discrete and supported
on {xj}j=1,2,...,M . We solve (8) using the Wasserstein distance.
Hence, (8) can be written as

max
p

M∑
j=1

−pj ln pj

s .t .

⎧⎨
⎩ inf

π(xP ,xQ)

∫∫
‖xP − xQ‖π(xP ,xQ)dxPdxQ ≤ θ∑M

j=1 pj = 1,
(22)

where p := [p1, p2, . . ., pj , . . ., pM ]T .
We first study the constraint infπ(xP ,xQ)

∫∫ ‖xP −
xQ‖π(xP ,xQ)dxPdxQ ≤ θ. In fact, the infimum optimization
problem on the left hand side of this constraint (i.e., the
Wasserstein distance) can be reformulated.

Lemma 2: If both Px and Qx are discrete, and supported on
{xj}j=1,2,...,M and {xi}i=1,2,...,N , respectively, the Wasser-
stein distance infπ(xP ,xQ)

∫∫ ‖xP − xQ‖π(xP ,xQ)dxPdxQ

is equivalent to a linear program

min
Pij

N∑
i=1

M∑
j=1

‖xi − xj‖ · Pij

s .t .

M∑
j=1

Pij = qi, ∀i ∈ [N ],

N∑
i=1

Pij = pj , ∀j ∈ [M ],

Pij ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ]. (23)

In (23), Pij denotes a joint discrete distribution supported on
{(xi,xj)}i∈[N ],j∈[M ].

Proof: See Appendix D in the online supplementary materi-
als. �

Intuitively, (23) can be seen as a optimal transport problem
as well (cf. Lemma 1 and Fig. 1): the resources are discretely
distributed on some given points {xj}, whereas facilities are
fixed at {xi}.

Lemma 2 transforms (22) to

max
p

M∑
j=1

−pj ln pj

s .t .

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
Pij

N∑
i=1

M∑
j=1

‖xi − xj‖ · Pij ≤ θ

∑M
j=1 Pij = qi, ∀i ∈ [N ],∑N
i=1 Pij = pj , ∀j ∈ [M ],

Pij ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ].

(24)

The constraint
∑M

j=1 pj = 1 is dropped because it is redundant
to (24).

Since the left hand side of the first constraint is a minimization
problem, we can directly drop the minimization. Thus, (24) is
equivalent to

max
Pij

−
N∑
i=1

M∑
j=1

Pij ln
N∑
i=1

Pij

s .t .

⎧⎨
⎩
∑N

i=1

∑M
j=1 ‖xi − xj‖ · Pij ≤ θ∑M

j=1 Pij = qi, ∀i ∈ [N ],

Pij ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ].

(25)

The solution to problem (25) is given in theorem below.
Theorem 4: If there exists a discrete distribution {P 0

ij}∀i,∀j
that strictly satisfies the inequality

∑N
i=1

∑M
j=1 ‖xi − xj‖ ·

P 0
ij < θ and simultaneously satisfies the equality

∑M
j=1 P

0
ij =

qi, the maximum entropy distribution solving (25) also solves

min
v0,λ

max
Pij

v0θ +

N∑
i=1

λiqi +

N∑
i=1

M∑
j=1

P 2
ij∑N

i=1 Pij

s .t .⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− ln

(∑N
i=1 Pij

)
− Pij

∑N
i=1 Pij

− v0‖xi − xj‖ − λi = 0,

∀i ∈ [N ], ∀j ∈ [M ],
Pij ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ],
v0 ≥ 0,

(26)

where λ := [λ1, λ2, . . ., λN ]T .
Proof: See Appendix E in the online supplementary materi-

als. �
The problem (26) is intuitively uneasy to be solved because

Pij has no closed-form expression. Therefore, we try to relax
the original maximum entropy problem (25). Since the entropy
of a joint distribution is no larger than the sum of the entropy of
marginals [49, Theorem 2.6.6]; i.e.,

−
N∑
i=1

M∑
j=1

Pij lnPij ≤ −
M∑
j=1

pj ln pj −
N∑
i=1

qi ln qi

and −∑N
i=1 qi ln qi is a constant, we can use the entropy of the

join distribution as a surrogate for optimization. Whenever the
entropy of the join distribution is maximized, the entropy of p(x)
is improved as well. [Of course, under this approximation, the
entropy of p(x) induced from the optimal Pij is not guaranteed
to be maximal as in (24).] As a result, (25) can be relaxed as
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follows.

max
Pij

−
N∑
i=1

M∑
j=1

Pij lnPij

s .t .

{∑N
i=1

∑M
j=1 ‖xi − xj‖ · Pij ≤ θ∑M

j=1 Pij = qi, ∀i ∈ [N ].

(27)

The solution to (27) is given in the theorem below.
Theorem 5: If there exists a discrete distribution {P 0

ij}∀i,∀j
that strictly satisfies the inequality

∑N
i=1

∑M
j=1 ‖xi − xj‖ ·

P 0
ij < θ and simultaneously satisfies the equality

∑M
j=1 P

0
ij =

qi, then the maximum entropy distribution solving (27) is

Pij = exp
{−v0‖xi − xj‖ − λi − 1

}
, ∀i ∈ [N ], ∀j ∈ [M ],

(28)
where v0 ∈ R1 and λi ∈ R1, ∀i solve the following convex and
smooth problem:

min
v0,λ

v0 · θ +
N∑
i=1

λiqi

+

N∑
i=1

M∑
j=1

exp
{−v0‖xi − xj‖ − λi − 1

}
s .t . v0 ≥ 0,

(29)

where λ := [λ1, λ2, . . ., λN ]T . In addition, the marginal distri-
bution is given as pj =

∑N
i=1 Pij , ∀j ∈ [M ].

Proof: Similar to the proof of Theorem 4. �
Since (29) is convex and smooth, it can be solved using

any first-order method (e.g., projected gradient descent). Let
the objective of (29) be fW−D(v0,λ); the subscripts “W” is
for “Wasserstein” and “D” for “Discrete”. The gradients of
fW−D(v0,λ) with respect to v0 and λi are, respectively,

∂fW−D
∂v0

=

θ −∑N
i=1

∑M
j=1 ‖xi − xj‖ exp{−v0‖xi − xj‖ − λi − 1

}
,

(30)
and

∂fW−D
∂λi

= qi −
M∑
j=1

exp
{−v0‖xi − xj‖ − λi − 1

}
. (31)

Likewise, when all gradients vanish, the minimum transport
cost coincides with the prescribed Wasserstein budget θ, and an
(discrete-version) optimal transport exists (i.e., qi =

∑M
j=1 Pij).

The projection step is straightforward in the gradient descent
procedure: whenever v0 < 0, let v0 = 0.

C. Solutions Using φ-Divergence

Suppose Px and Qx have the same support S . If Px and Qx

are absolutely continuous with respect to the Lebesgue measure
and Px is absolutely continuous with respect to Qx, then the
φ-divergence of Px from Qx is defined as∫

S
φ

(
dPx

dQx

)
dQx =

∫
S
φ

(
p(x)

q(x)

)
q(x)dx, (32)

where φ(t), t ≥ 0 is a convex function such that φ(1) := 0
and 0φ(0/0) := 0; dPx/dQx is the Radon-Nikodym derivative.
Alternatively, if Px and Qx are discrete on the same support,

the φ-divergence of p from q is defined as
N∑
i=1

qiφ

(
pi
qi

)
. (33)

The φ-divergence is a generalization of the Kullback-Leibler
divergence. Letting φ(t) := t ln t or φ(t) := t ln t− t+ 1, the
φ-divergence degenerates to the Kullback-Leibler divergence.
Other possible choice of φ(t) can be found in, e.g., [59, Table
2]. For the demonstration purpose only, results in this section are
only based on the Kullback-Leibler divergence. This is because
the Kullback-Leibler divergence is the most popular one which
also has clear physical meaning in information theory [48], [70].
Interested readers may try other φ(·) themselves.

Since the reference distribution Qx in this article is limited
to be discrete, it is pointless to consider the continuity of Px.
Otherwise, Px and Qx would have discrepant supports so that
the φ-divergence is undefined. Thus, we only study the solution
to (8) when Px is discrete and neglect the continuous case (7).

1) Solution to (8): We solve (8) using the Kullback-Leibler
divergence. Hence, (8) can be written as

max
p

N∑
i=1

−pi ln pi

s .t .

{∑N
i=1 pi ln

(
pi

qi

)
≤ θ∑N

i=1 pi = 1,

(34)

where p := [p1, p2, . . ., pj , . . ., pN ]T (n.b., M = N ). The solu-
tion to (34) is outlined in the theorem below.

Theorem 6: The distribution solving (34) is given by

pi = exp

{−λ0 ln(qi) + λ1

−(λ0 + 1)
− 1

}
, ∀i ∈ [N ], (35)

where λ0 ∈ R1, λ1 ∈ R1 solve the following the convex and
smooth problem:

min
λ0,λ1

λ0θ + λ1 + (λ0 + 1)

N∑
i=1

pi

s .t . λ0 ≥ 0.

(36)

Proof: See Appendix F in the online supplementary materi-
als. �

Since (36) is convex and smooth, it can be solved using any
first-order method (e.g., projected gradient descent). Let the
objective of (36) be fKL−D(λ0, λ1); the subscripts “KL” is for
“Kullback-Leibler” and “D” for “Discrete”. The gradients of
fKL−D(λ0, λ1) with respect to λ0 and λ1 are, respectively,

∂fKL−D(λ0, λ1)

∂λ0
= θ +

N∑
i=1

[
1 +

ln(qi) + λ1

λ0 + 1

]
pi, (37)

and

∂fKL−D(λ0, λ1)

∂λ1
= 1−

N∑
i=1

pi. (38)

Likewise, when the optimality reaches, the Kullback-Leibler
divergence between p and q conincides with the prescribed
budget θ, and the sum of p is unit. The projection step is
straightforward in the gradient descent procedure: whenever
λ0 < 0, let λ0 = 0.
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D. Comparisons for the Three Statistical Similarity Measures

As we can see, the moments-based similarity and Wasserstein
distance do not require that the two distributions to have the
same support. Therefore, a discrete distribution and a continu-
ous distribution can be discussed in a same maximum entropy
problem, so can be two discrete distributions with different
supports. In addition, the advantage of the Wasserstein distance
and the φ-divergence is that they can implicitly take into account
high-order moments of random variables even for multivariate
problems. However, using the Wasserstein distance and the
φ-divergence implies that computationally intensive numerical
problems have to be solved (cf. Theorem 3, Theorem 5, and
Theorem 6). Instead, using the moments-based similarity gives
the Gaussian approximation state estimation framework which
means that closed-form solutions exist (i.e., canonical Kalman
iterations).

E. Projected Gradient Descent Algorithm for Maximum
Entropy Problems

Since all maximum entropy problems subject to the
Wasserstein distance and the φ-divergence can be solved by
the projected gradient descent algorithm, we depict it in
Algorithm 1. Without loss of generality, we use the problem
under the Kullback-Leibler divergence [i.e. (34)] as an example;
see Theorem 6.

IV. DISTRIBUTIONALLY ROBUST STATE ESTIMATION

FRAMEWORK FOR NONLINEAR SYSTEMS

This section outlines the overall distributionally robust
particle-based state estimation method.

A. Generate Worst-Case Prior State Particles

We use the solutions to (3) and (4) to generate worst-case prior
state particles. Solutions under the moments-based similarity
measure are just used to argue for the distributional robustness
of the Gaussian approximation framework; see Corollary 1.
Therefore, we do not cover them in this subsection. Suppose
the worst-case prior state particles are {xj}j=1,2,...,M .

First, we suppose {xj}j=1,2,...,M are preset and only their
weights are expected to be updated. For example, we can let
M := N and {xj}j=1,2,...,M be a copy of {xi}i=1,2,...,N . For
another example, {xj}j=1,2,...,M can be uniformly sampled
from a subset of Rn and this subset is usually the smallest
hyperrectangle or hyperellipsoid containing {xi}i=1,2,...,N . We
have the following method for generating worst-case prior state
particles.

Method 1: Given worst-case prior state particles
{xj}j=1,2,...,M and nominal prior state particles {xi}i=1,2,...,N ,

1) If the two sets {xj} and {xi} are identical, the worst-
case weights uxj of particles xj can be determined by
Theorem 5 or Theorem 6.

2) If the two sets are different, the worst-case weights uxj of
particles xj can be determined by Theorem 5.

Algorithm 1: Projected Gradient Descent Method for Max-
imum Entropy Problem Under the Kullback-Leibler Diver-
gence.
Definition: S as maximum allowed iteration steps and s the

current iteration step; α as step size; ε as numerical
precision threshold; abs(·) returns absolute value.

Remark: Since (36) is convex, in principle, any initial values
for λ0 ≥ 0 and λ1 are acceptable. If early stopping is
applied (i.e., S is not sufficiently large for time-saving
purpose), a normalization procedure is necessary to
guarantee 1 =

∑
i pi.

Input: S, α, ε, λ0, λ1

1: s← 0
2: while true do
3: // Gradient Descent
4: λ0 ← λ0 − α · ∂fKL−D

∂λ0
// See (37)

5: λ1 ← λ1 − α · ∂fKL−D
∂λ1

// See (38)
6: // Projection
7: if λ0 < 0 then
8: λ0 ← 0
9: end if

10: // Next Iteration
11: s← s+ 1;
12: if s > S or abs(∂fKL−D

∂λ1
) < ε then

13: if 1 �=∑
i pi then // Early Stopping Applied

14: pi ← pi/
∑

j pj // Normalization
15: end if
16: Exit Algorithm
17: end if
18: end while
Output: pi in (35)

3) No matter whether the two sets are identical or not, the
worst-case weights uxj of particles xj can also be deter-
mined by Theorem 3 by letting uxj ∝ p(xj), where p(x)
is defined in (18). Note that in this case, a normalization
procedure is necessary; uxj ← uxj/

∑
j uxj . �

Second, we suppose {xj}j=1,2,...,M are not preset. Hence,
we can directly sample M particles from p(x) in (18). Since
p(x) is defined in a partitioned region/space, the first step is to
choose a sub-region, and the second step is to draw a worst-case
prior state particle from this sub-region. We have the following
method.

Method 2: First, draw an integer j ∈ [N ] according to the
discrete reference distribution Qx (i.e., choose a sub-region Cj

whose probability being chosen is qj). Second, draw a sample
xj from Cj using p(x) defined in (18). Repeat the two steps
above M times to obtain M worst-case prior state particles. In
this case, all particles xj have the same weight 1/M . �

At last, we highlight that the proposed approaches for
worst-case prior state particle generation based on entropy-
maximization strategy can counteract particle degeneracy. In
fact, maximizing the entropy of a variable distribution implies
minimizing the Kullback-Leibler divergence of this distribution
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from a uniform distribution. This can be seen from

−
M∑
j=1

pj ln pj = lnM −
M∑
j=1

pj ln
pj

1/M
. (39)

Therefore, the worst-case prior state particles have more bal-
anced weights than the corresponding nominal prior state parti-
cles (n.b., uniformly distributed weights are most balanced). On
the other hand,

−
M∑
j=1

pj ln pj ≥
M∑
j=1

pj(1− pj) = 1−
M∑
j=1

p2j . (40)

It means that any methods reducing the variance of weights
(i.e., improving the effective sample size) implicitly elevate the
entropy of weights of prior state particles; cf. [18, Eq. (51)]
or [26, Eq. (5)].

B. Evaluate Worst-Case Likelihoods

When the nominal measurement noise is additive, i.e., y =
h(x) + v, the nominal likelihood distribution is pv[y − h(x)].
As a result, the worst-case likelihood distribution can be cho-
sen near pv[y − h(x)], and worst-case likelihood of a prior
state particle (or a worst-case prior state particle; depending on
whether the state equation is uncertain or not) given y can be
evaluated accordingly. Likewise, when the nominal measure-
ment noise is multiplicative, the nominal likelihood distribu-
tion is pv[h

−1(x) · y] if h(x) is invertible. To be specific, we
take a Gaussian case as an example to explain the worst-case
likelihood evaluation method under additive and multiplicative
measurement noises.

Method 3: If the nominal likelihood distribution of x given y
is pv[y − h(x);μ,Σ] or pv[h−1(x) · y;μ,Σ], and pv(·;μ,Σ)
is a multivariate Gaussian with mean μ and covariance Σ,
then the worst-case likelihood distribution of x given y is
pv(·;μ, θΣ) where θ ≥ 1. �

By multiplying Σ by a scalar θ ≥ 1, a worst-case maximum-
entropy likelihood distribution can be obtained because the
entropy of the m-dimensional Gaussian distribution pv(·;μ,Σ)
is m

2 + m
2 ln(2π) + 1

2 ln(|Σ|). Hence, improving the covariance
implies raising the entropy. Method 3 can be straightforwardly
extended to other noise distributions such as the Student’s t
distribution. We do not cover details here.

However, when the nominal measurement noise is non-
additive and non-multiplicative, such closed-form evaluation
methods are unavailable. Therefore, numerical methods are in-
dispensable. The first step is to generate nominal likelihood par-
ticles {yr|xj}r=1,2,...,R for each worst-case prior state particle
xj (n.b., when the state equation is exact, worst-case {xj}j∈[M ]

and nominal {xi}i∈[N ] are the same). This can be done by the
nominal measurement equation y = h(xj ,v). Specifically, we
need to generate R samples from v, say vr, and obtain {yr|xj}
by yr|xj := h(xj ,vr), ∀r ∈ [R]. Since v is high-dimensional,
we use the importance sampling method [71, Section 11.1.4]: 1)
uniformly draw R samples in the support of v, and 2) use p(v)
to determine their weights; uvr ∝ p(vr) (n.b., a normalization
procedure is hence necessary). Based on nominal likelihood
particles {yr|xj}r=1,2,...,R whose weights are uyr |xj = uvr ,

the worst-case likelihood of xj is ready to be evaluated. Sup-
pose the support set of the worst-case likelihood distribution is
{yt|xj}t=1,2,...,T . As the case that generates worst-case prior
state particles in Section IV-A, {yt|xj}t=1,2,...,T can be just a
copy of {yr|xj}r=1,2,...,R (thus T := R) or uniformly sampled
from a subset of Rm. The subset can be the smallest hyperrect-
angle or hyperellipsoid containing {yr|xj}r=1,2,...,R.

We have two methods to evaluate the worst-case likelihood
of xj given the measurement y.

Method 4: Suppose p∗y|xj (y) solves (5) using the Wasserstein

distance. The worst-case likelihood ofxj given the measurement
y is p∗y|xj (y). �

Method 5: Augment y into the support sets of worst-
case likelihood distributions for xj , j ∈ [M ]; i.e., let
{yt|xj}t=1,2,...,T+1 := {y}⋃{yt|xj}t=1,2,...,T . Suppose
p∗y|xj (y) solves (6) using the Wasserstein distance (n.b., the
Kullback-Leibler divergence is not applicable because after
augmentation, the two support sets are hardly identical).
The worst-case likelihood of xj given the measurement y is
p∗y|xj (y). �

Compared to Method 4 and Method 5, Method 3 is likely to
be of more interest in engineering for two reasons: 1) many mea-
surement equation are driven by additive measurement noises,
and 2) the involved likelihood distribution has a closed-form
expression which allows fast computation.

C. Outlier Treatment

In this subsection, we provide an outlier identification and
treatment method for particle filtering framework. The outlier
identification method is given below.

Method 6: If ∀j ∈ [M ], p∗y|xj (y) < ε where ε is a threshold,
say 5%, theny is an outlier because there exists no any prior state
particle that possibly generates this measurement. Alternatively,
supposing the weighted mean of particlesxj is x̄ :=

∑M
j=1 uxj ·

xj , if p∗y|x̄(y) < ε, then y is an outlier. �
The outlier treatment method is given below.
Method 7: The identified outlier can be directly trashed and

all prior state particles directly become posterior, during which
associated weights keep unchanged. This idea is motivated by
re-descending influence functions in M-estimation, e.g., Ham-
pel’s influence function [37, Eq. (4.90)]. The outlier can also
be replaced by the nearest likelihood particle generated by the
prior state particle that has the largest likelihood or replaced
by the nearest likelihood particle generated by the weighted
mean. This philosophy is motivated by monotonic influence
functions in M-estimation, e.g., Huber’s influence function [37,
Eq. (4.53)]. �

D. Overall Method

The distributionally robust particle filtering framework is
summarized in Algorithm 2. Algorithm 2 is a robustified version
of the popular canonical particle filter in [18, Algorithm 3]. The
used proposal density (i.e., importance density) for importance
sampling is the prior state distribution as in [18, Eq. (63)].
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Algorithm 2: Distributionally Robust Particle Filtering.
Definition: k as discrete time index; N as number of

nominal prior state particles; M as number of worst-case
prior (and also posterior) state particles; R as number of
nominal likelihood particles for every (worst-case) prior
state particle, and T as number of worst-case likelihood
particles for the same (worst-case) prior state particle; xi

0
as posterior state particles at k = 0 and uxi

0
the associated

weights, ∀i ∈ [N ]; p∗(yk|xj
k) as worst-case likelihood of

xj
k given yk; N̂eff as effective sample size and Nthres its

threshold.
Remark: If measurement noises are additive or

multiplicative, ignore Step 3, and use Method 3 in Step 4.
If there are no process model uncertainties, ignore Step 2.
If resampling is applied at every time k, M and N can be
different; cf. Line 30. Otherwise, M and N must be
identical to guarantee the number of posterior state
particles at time k − 1 is the same as the number of prior
state particles at time k; cf. Line 5.

Initialization: N , M , R, T , Nthres, and {xi
0, uxi

0
}i∈[N ].

Input: yk, k = 1, 2, 3, . . .
1: For every k, execute the following 5 steps
2: // Step 1: Generate Nominal Prior State Particles
3: for i = 1 : N do
4: Sample wi

k−1 from the distribution of wk−1
5: xi

k = fk(x
i
k−1,w

i
k−1)

6: end for
7: // Step 2: Obtain Worst-Case Prior State Particles
8: Use Method 1 or Method 2 to generate worst-case

prior state particles {xj
k}j∈[M ] and obtain their

weights {uxj
k
}j∈[M ]

9: // Step 3: Evaluate Worst-Case Likelihood for Every xj
k

10: for j = 1 : M do
11: //Generate Nominal Likelihood Particles

yr
k, ∀r ∈ [R]

12: for r = 1 : R do
13: Sample vr

k from the distribution of vk

14: yr
k = hk(x

j
k,v

r
k)

15: end for
16: //Evaluate Worst-Case Likelihood of xj

k at yk

17: Use Method 4 or Method 5 for likelihood evaluation
18: //Outlier Identification and Treatment
19: Use Method 6 for outlier identification and Method

7 for outlier treatment
20: end for
21: // Step 4: Generate Posterior State Particles xj

k
22: for j = 1 : M do
23: Keep xj

k unchanged
24: Update weights by uxj

k
← uxj

k
· p∗(yk|xj

k)

25: end for
26: Normalize weights uxj

k
, ∀j ∈ [M ]

27: // Step 5: Resampling
28: N̂eff ← 1/

∑M
j=1 u

2
xj

k

29: if N̂eff < Nthres then
30: Resample N times from {xj

k, uxj
k
}j∈[M ]

31: end if
Output: Worst-case posterior state particles {xi

k} and
weights {uxi

k
}, ∀i ∈ [N ].

E. Computational Burden

As we can see, the proposed generic robustified particle filter
is computationally intensive: if S in Algorithm 1 and N , M ,
R, and T in Algorithm 2 are large, the calculation burden is
heavy as well. The worst-case complexity order of Algorithm 1
is O(S). However, the complexity order of Algorithm 2 is hard
to be specified because it depends on which sampling method
(e.g., the importance sampling and the fundamental theorem of
simulation) is used, which resampling method (e.g., systematic
and multinomial) is used, and which maximum-entropy method
(among Methods 1-5) is used. The burden, however, is unavoid-
able to robustify particle-based filters and to evaluate likelihoods
under non-additive and non-multiplicative measurement noises.
If the state equation is exact and measurement noise densities
fortunately have closed-form expressions (see, e.g., Method 3),
then the computation burden can be limited and the resulted
robust particle filter has the same computational complexity
as the canonical particle filter (because no extra computation
burden is introduced in Step 2 and Step 3).

F. Size of Ambiguity Set

The sizes of ambiguity sets (i.e., θ’s in Theorems 3-6) need
to be specified in implementing the robustified particle filter.
However, this cannot be theoretically conducted because for a
real state estimation problem, the true states are unknown. In
other words, the training dataset is unavailable so that the sizes of
ambiguity sets cannot be tuned to be (nearly) optimal. Therefore,
signal processing practitioners are expected to try appropriate
values for their specific problems. The general principle is that
the sizes can be neither too large nor too small: an extremely
large value renders the robust filter being too conservative, while
the robust filter with an extremely small value does not have
sufficient robustness. For details, see the experiment section.

V. EXPERIMENTS

All the source codes are available online at GitHub: https:
//github.com/Spratm-Asleaf/DRSE-Nonlinear. Additional ex-
periments on finding maximum entropy distributions can be
found in Appendix G in the online supplementary materials.
We first consider a one-dimensional time series example, and
then study a target tracking example.

A. A Time Series Example

In this subsection, we consider a univariate non-stationary
growth model [18], [31]. The true system model is given as⎧⎪⎨

⎪⎩
xk =

xk−1
2

+
25xk−1
1 + x2

k−1
+ 8 cos(1.2k) + wk−1,

yk =
x2
k

20
+ 0.5 sin(xk) + vk.

The process noise wk and the measurement noise vk follow
zero-mean Gaussian distributions; the variance ofwk isQk = 10
and of vk is Rk = 1; the initial condition is x0 = 0 [18]. This
is an abstract time series problem, and the physical meanings of
variables and their units are not specified. In this experiment, we
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Fig. 2. Given the same system state trajectory (i.e., {xk}, ∀k), there do not
exist significant differences between measurements from the true model and the
nominal model.

suppose the nominal system model is uncertain and given as⎧⎪⎨
⎪⎩

xk =
xk−1
2

+
25xk−1
1 + x2

k−1
+ 8 cos(1.2k) + wk−1,

yk =
x2
k

20
+ vk.

Namely, there is a model mismatch for the measurement equa-
tion: the term “0.5 sin(xk)” in the true measurement model was
not identified by the model designer. In the measurement equa-
tion, the term “x2

k/20” is dominating because it has significantly
larger values than those of the term “0.5 sin(xk)”. Hence, the
model designer can hardly get aware of this model mismatch;
cf. Fig. 2. Till now, none of existing filters for nonlinear system
models can handle such a model mismatch.

We implement the canonical particle filter (PF) in [18, Algo-
rithm 3], the Gaussian approximation method, specifically the
unscented Kalman filter (UKF), in [72, pp. 448–450], and the
robust particle filter (RPF) in Algorithm 2 for comparison. In
this example, since the measurement noise vk is additive and
Gaussian, Method 3 is used to evaluate worst-case likelihoods
for the proposed robust particle filter. For all methods, we assume
that the initial state particles are sampled from a one-dimensional
Gaussian distribution with mean of 0 and variance of 1. Since
there do not exist model uncertainties in the state equation,
Algorithm 1 is not used. In Algorithm 2, we do not initialize R
and T because for this closed-form likelihood evaluation case,
they are not used.

First, we investigate the performance of the PF and the RPF
with different numbers of particles. Let the number of particles
be N for both the PF and the RPF. For every given N , we con-
duct 100 independent Monte Carlo episodes and each episode
runs 100 time steps. The performance of each method, in each
episode, is measured by the root time-averaged mean square
error (RTAMSE) along 100 time steps, i.e.,√√√√ 1

100

100∑
k=1

(xk − x̂k)
2

where x̂k denotes the estimate of xk. The overall performance
of each method is measured by the averaged RTAMSE of the
100 episodes, which is shown in Table I. In Method 3 for the
RPF, we use θ = 5 for demonstration.

TABLE I
AVERAGED RTAMSE VERSUS NUMBER OF PARTICLES

Fig. 3. The averaged RTAMSEs of the RPF versus the values of θ.

As we can see from Table I, as the number of particles
increase, the averaged RTAMSEs of both the PF and the RPF
decrease. However, the RPF always outperforms the standard
PF because the RPF is robust against model uncertainties.
In this case, the UKF performs badly because as a Gaussian
filter, it cannot handle the high nonlinearity of the system
model.

Second, we investigate whether the RPF is robust against the
value of θ; cf. Method 3. Since both the PF and the RPF can
work satisfactorily with N = 200, we use N = 200 for every
possible θ. All other settings remain unchanged. The averaged
RTAMSEs of the RPF versus the values of θ are shown in
Fig. 3.

As we can see from Fig. 3, the RPF is sensitive to the value
of θ. If we use θ = 2.5, the RPF has smaller averaged RTAMSE
than that under θ = 5. Hence, the results of the RPF in Table I
can be further refined with θ = 2.5. We used θ = 5 for the RPF in
Table I just for the purpose of illustration, which, however, does
not lose the generality. To sum up, the value of θ can neither
be too large nor be too small. Otherwise, the performance of
the RPF is not satisfactory. This is because a large value of
θ renders the RPF being too conservative, while a small value
cannot provide sufficient robustness for the RPF. This conclusion
is consistent with that for the linear system case [39], [40].
Nevertheless, the optimal or convincing tuning method for the
value of θ is open. This is because for a real state estimation
problem, the true state is unknown, and therefore, there does not
exist the training dataset to convincingly determine the value of
θ. Thus, in practice, readers should try different values for θ to
achieve the satisfactory filtering performance for their specific
problems.

Third, we investigate whether the performance of the RPF
degrades if the nominal model is exactly the same as the true
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TABLE II
AVERAGED RTAMSE VERSUS NUMBER OF PARTICLES (EXACT MODEL)

Fig. 4. A target tracking diagram. The initial position of the target is (5, 5)
and of the sensor is (0, 0). The trajectory is a quarter of a circle but every point
on this circle is contaminated by noise; i.e., the trajectory is not ideally round.

model. In Method 3 for the RPF, we fix θ = 5 for demonstration.
The results are shown in Table II.

As we can see from Table II, as the number of particles
increase, the averaged RTAMSEs of both the PF and the RPF
decrease. However, in this case (i.e., when the nominal model
is exactly the same as the true model), the RPF cannot outper-
form the standard PF. This is because the RF is the optimal
method for the exact model in the sense that it gives the best
approximates to the posterior state distributions. Hence, there
is a trade-off between the optimality under perfect conditions
and the robustness under uncertain conditions: the robustness
under uncertain conditions comes with the cost of sacrificing
the optimality under perfect conditions. To be specific, the
PF is optimal when there do not exist model uncertainties
but it has no robustness when model uncertainties exist. In
contrast, the RPF is robust against model uncertainties but it
is not optimal when the nominal model is exactly true. This
conclusion is consistent with that for the linear system case;
see [39], [40] for details. This is intuitively understandable from
a basic life philosophy: nothing is free, although some are
cheap.

B. A Target Tracking Example

In this subsection, we consider a target tracking problem under
uncertain conditions; see Fig. 4 for an illustration. The target
moves along the curved-orange-dotted trajectory and its true
(but unknown) speed is v = 2m/s. The sensor is able to obtain
the real-time distance ρ and relative orientationϕ from the target
to itself; the sensor moves along the vertical axis from the origin
and its speed is v0 = 1m/s.

We use the (nearly) constant-velocity (CV) model [73] to track
the target: the state equation is xk = Fxk−1 +Gwk−1 and

xk :=

⎡
⎢⎢⎣
x1,k

s1,k
x2,k

s2,k

⎤
⎥⎥⎦ ,F :=

⎡
⎢⎢⎣
1 Δt 0 0
0 1 0 0
0 0 1 Δt
0 0 0 1

⎤
⎥⎥⎦ ,

G :=

⎡
⎢⎢⎣
Δt2/2 0
Δt 0
0 Δt2/2
0 Δt

⎤
⎥⎥⎦ ,

where Δt := 0.5 s is the sampling time; x1 and s1 (resp. x2 and
s2) denote the real-time position and velocity of the target in
the horizontal (resp. vertical) axis, respectively; white-Gaussian-
distributed wk−1 is the acceleration noise vector whose mean is
zero and covariance is Qk−1 := diag{5, 5}. When we use the
CV model, we assume that the true velocity of the target in each
axis is a slowly-changing (i.e., almost constant) time function.
Another choice is to use the (nearly) constant-acceleration (CA)
model [73], which assumes that the true acceleration of the
target in each axis is a slowly-changing time function. Yet
another choice is to use the coordinated-turn (CT) model [73],
which assumes that the true angular velocity of the target is a
slowly-changing time function. For this target tracking example,
the CV model, the CA model, the CT model, and also other
suitable models [73] are applicable although they may have
different tracking performance. However, none of these models
are exact models because, for example, when we adopt the CT
model, we do not know the exact values of the angular velocity
over time. That is, there exist model mismatches no matter which
model is used. Since this article is studying the advantage of the
proposed distributionally robust particle filter over the standard
particle filter when modeling uncertainties exist, rather than
investigating which model is best for this specific target tracking
example, it is sufficient to use the CV model for demonstration.

On the other hand, the nominal measurement model is yk :=
[ρk, ϕk]

T and

ρk =

√
(x1,k − x0

1,k)
2 +

(
x2,k − x0

2,k

)2
+ v1,k,

ϕk = tan−1
(
x2,k − x0

2,k, x1,k − x0
1,k

)
+ v2,k,

where x0
1,k and x0

2,k denote the real-time position of the sensor
in the horizontal axis and the vertical axis, respectively; v1 is
the ranging error with unit of m and v2 is the heading error
with unit of rad; tan−1(·, ·) is the two-argument inverse tangent
function [74]. Both v1 and v2 are white Gaussian with zero

mean. The measurement noise covariance is Rk := [
1 0
0 0.001

].

(Namely, the error range of v1 is ±3√1m = ±3m and of v2
is ±3√0.001 rad = ±0.095 rad = ±5.44 deg.) The unit of all
position variables is meter (m), the unit of all speed and velocity
variables is meter per second (m/s), and the unit of all angle
variables is radian (rad).

However, in practice, there may exist positioning errors for
the moving sensor; the nominal values of x0

1,k and x0
2,k (might
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from GPS etc.) are uncertain. Specifically, the true governing
(but unknown) measurement model might be

ρk=

√(
x1,k − x0

1,k − η1,k

)2
+
(
x2,k − x0

2,k − η2,k

)2
+v1,k,

ϕk = tan−1
(
x2,k − x0

2,k − η2,k, x1,k − x0
1,k − η1,k

)
+ v2,k,

where η1,k and η2,k are the sensor’s positioning errors. In this
experiment, they are assumed to be Gaussian having the same
mean of zero and the same variance of 1m2; i.e., the error range
is ±3√1m = ±3m.

We implement the canonical particle filter (PF) in [18, Algo-
rithm 3], the Gaussian approximation method, specifically the
unscented Kalman filter, (GA-UKF) in [72, pp. 448–450], and
the robust particle filter (RPF) in Algorithm 2 for comparison.
In this example, since the measurement noises v1,k and v2,k are
additive and Gaussian, Method 3 with θ := 5 is used to evaluate
worst-case likelihoods for the proposed robust particle filter. For
both the PF and the RPF, the number of particles are all set to
1000. For all methods, we assume that the initial state particles
are sampled from a 4-dimensional Gaussian distribution with
mean of [5, 0, 5, 0]T and covariance of diag{0.1, 0.1, 0.1, 0.1}.
In Algorithm 1, S := 500, α := 0.05, ε := 1× 10−4, λ0 := 2,
and λ1 := 0. In Algorithm 2, N = M := 1000. (We do not
initializeR and T because for this closed-form likelihood evalu-
ation case, they are not used.) Just for the demonstration purpose
and without loss of generality, all the involved parameter values
in this experiment are arbitrarily set but the conclusions remain
consistent. One may try other values for comparison using the
shared source codes at GitHub.

We conduct 50 independent episodes of Monte Carlo simula-
tions and each episode runs 100 discrete time steps.

For each episode, the position estimation error is measured
by the root time-averaged mean square error (RTAMSE) along
100 time steps, i.e.,√√√√ 1

100

100∑
k=1

(x1,k − x̂1,k)
2 + (x2,k − x̂2,k)

2

where x̂1,k (resp. x̂2,k) denotes the estimate of the position x1,k

(resp. x2,k). Likewise, the velocity estimation error for each
episode is given by√√√√ 1

100

100∑
k=1

(s1,k − ŝ1,k)
2 + (s2,k − ŝ2,k)

2

where ŝ1,k (resp. ŝ2,k) denotes the estimate of the velocity s1,k
(resp. s2,k). The position and velocity RTAMSEs of each episode
are shown in Fig. 5.

The overall target tracking error is measured by the averaged
RTAMSE of the 50 episodes, which is shown in Table III, where
“R” stands for averaged RTAMSEs (unit: m for the position
case or m/s for the velocity case), while “T” denotes average
execution time at each time step (unit: second).

At each time step k, the position estimation error is measured
by the averaged root mean square errors (RMSE) of the 50
episodes, i.e.,

1

50

50∑
l=1

√[
x
(l)
1,k − x̂

(l)
1,k

]2
+
[
x
(l)
2,k − x̂

(l)
2,k

]2
,

Fig. 5. Position and velocity RTAMSEs of each episode.

TABLE III
TARGET TRACKING RESULTS

Fig. 6. Averaged position and velocity RMSEs at each time step k. In partic-
ular, the velocity RMSE of the RPF is significantly smaller than those of the PF
and the GA-UKF.

where x̂(l)
1,k (resp. x̂(l)

2,k) denotes the estimate of the position x1,k

(resp. x2,k) in the lth episode. Likewise, at time k, the velocity
estimation error is measured by the averaged root mean square
errors (RMSE) of the 50 episodes, i.e.,

1

50

50∑
l=1

√[
s
(l)
1,k − ŝ

(l)
1,k

]2
+
[
s
(l)
2,k − ŝ

(l)
2,k

]2
,

where ŝ
(l)
1,k (resp. ŝ(l)2,k) denotes the estimate of the velocity s1,k

(resp. s2,k) in the lth episode. The averaged position and velocity
RMSEs at each time step k are shown in Fig. 6.

As we can see from Fig. 5 and Table III, when there exist
modeling uncertainties (i.e., when the non-exact CV model is
used and when both η1,k and η2,k are non-zero),

1) the GA-UKF and the PF have the roughly same position
estimation error, while the RPF has a significantly smaller
position estimation error;

2) the velocity estimation error of the GA-UKF is signif-
icantly smaller than that of the PF, while the velocity
estimation error of the RPF is significantly smaller than
those of both the PF and the GA-UKF.

This is because the GA-UKF and the RPF are distributionally
robust against model uncertainties: when model uncertainties
exist, the GA-UKF and the RPF have the ability to withstand
them. In addition, the RPF outperforms the GA-UKF since
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the GA-UKF restrictively assumes Gaussianity of prior state
distributions and likelihood distributions. However, the benefit
of using GA-UKF is that it is computationally efficient.6

In the experiment, just for the illustration purpose, we use
θ = 5 in the proposed RPF. However, the RPF is sensitive to the
value of θ: this value can neither be too large nor be too small.
Otherwise, the performance of the RPF is not satisfactory. A
large value of θ renders the RPF being too conservative, while
a small value cannot provide sufficient robustness for the RPF.
This phenomenon has been reported in Fig. 3 and deeply studied
for the linear system case [39], [40]. Hence, we do not discuss
much here. One may also use the shared source codes to verify
this claim. Nevertheless, the tuning method for the value of θ is
open. This is because for a real-world state estimation problem,
the true state is unknown, and therefore, there does not exist the
training dataset to convincingly determine the value of θ. Thus,
in practice, readers should try different values for θ to achieve
the satisfactory filtering performance for their specific problems.

VI. CONCLUSION

This article studies the distributionally robust state estimation
scheme for nonlinear systems subject to model uncertainties.
Attention has been paid to the particle filtering framework. The
maximum entropy prior state distributions and the maximum
entropy likelihood distributions are leveraged to robustify the
particle filter. The proposed maximum-entropy strategies can
also provide weight-balancing mechanism to reduce particle
degeneracy and new-sample-generating mechanism to diminish
particle impoverishment. The existing Gaussian approximation
framework is proven to be distributionally robust but it may
have limited ability to handle high nonlinearity of nonlinear
system models. In addition, a generic likelihood evaluation
method is presented under non-additive and non-multiplicative
measurement noises. However, extra computation burden is
required to obtain worst-case prior state particles even when
worst-case likelihoods can be analytically evaluated. Another
issue is to properly choose the radii of ambiguity sets, i.e., θ’s
in Theorems 3-6. Nevertheless, these radii cannot be trained to
be (nearly) optimal because for real state estimation problems,
true states (i.e., training dataset) are unknown. Therefore, in
practice, practitioners have to try appropriate values for their
specific problems.
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Supplementary Materials

APPENDIX A
ON MODEL UNCERTAINTIES

In the signal processing [55, Chapter 1], [41] and automatic
control [56, Chapter 9] communities (and also many other
fields), a nominal model O =M(I) is said to be uncertain if
it is not guaranteed to be exactly the same as the true governing
model O = M0(I), where O denotes the output and I the
input. Other equivalent terms to “uncertain model” that are
widely used include “mismatched model”, “deviated model”,
and “perturbed model”, etc. Possible cases are as follows.

1) Parameter Uncertainty. Suppose the nominal model
O = M(I;β) is parameterized by β. If the model
type is exact and only the parameter β is uncertain, the
model uncertainty is reflected by “parameter uncertainty”.
In state estimation contexts, a possible example is that
the true system model is guaranteed to be linear and
the noises are guaranteed to be Gaussian, but we do not
exactly know the system matrices and/or noise statistics.

2) Type Uncertainty. In state estimation contexts, an ex-
ample might be the case that the true system model
is nonlinear but we might use a linear nominal model.
Another example might be the case that the true system
model is known to be the one among candidate models.
However, at one time instant, we do not exactly know
which candidate model is governing the true plant [15],
[36]. In this case, one may also call it “mode uncertainty”.

3) Measurement Outlier. If outliers unexpectedly exist
in measurements, the nominal measurement distribution
might deviate from the true measurement distribution.
In linear-system state estimation contexts, a possible
example is that the nominal measurement noise model
is Gaussian, whereas the true measurement noise model
is fat-tailed (e.g., Laplacian, Student’s t).

The list is not exhaustive, however, most common in practice.

APPENDIX B
PROOF OF LEMMA 1

This lemma is a special case of [62, Theorem 1.3]. With the
facts in [62, Remark 1.12], the statements in this lemma can
be obtained. However, the proof of [62, Theorem 1.3] is rather
complicated because it dealt with a more general problem and
conducted many advanced analyses; it is not motivational for
the contexts of this article. Below gives a new and concise
proof because it is necessary for insights in Fig. 1.

First, by noting that p(xQ) = q(x) =
∑N
i=1 qiδxi(x) and∫

qiδxi(x)dx = qi, we have

infπ(xP,xQ)

∫∫
‖xP − xQ‖π(xP,xQ)dxPdxQ

= infI(xQ|xP)

∫∫
‖xP − xQ‖ I(xQ|xP)p(xP)

p(xQ) p(xQ)dxPdxQ

= infI(xi|xP)

∑N
i=1

∫
‖xP − xi‖ I(x

i|xP)p(xP)
p(xQ)|xQ=xi

qidxP

= infI(xi|xP)

∑N
i=1

∫
‖xP − xi‖I(xi|xP)p(xP)dxP

= infI(xi|x)

∑N
i=1

∫
‖x− xi‖I(xi|x)p(x)dx.

The first equality holds because when reformulating the
Wasserstein distance, the marginals Px and Qx are fixed.

The infimum optimization problem above has a clear physical
meaning in transport theory: we aim to move all the resources
(that are continuously distributed) in the whole region to
some fixed facilities {xi}i=1,2,...,N . At every point x, the
normalized amount of resources are p(x). The proportion of
p(x) to be moved from x to the facility xi is I(xi|x). The
cost to move every unit of resources from x to xi is ‖x−xi‖.
Therefore, the Wasserstein distance denotes the minimum
transport cost to move a distribution from one support set to
another. Since I(xi|x) are conditional distributions, implicit
constraints are

∫
I(xi|x)p(x)dx = qi, ∀i ∈ [N ],∑N

i=1 I(xi|x) = 1, ∀x,
I(xi|x) ≥ 0, ∀i ∈ [N ],∀x.

Second, we write the Lagrange dual problem

supλi
infI(xi|x)

∑N
i=1

∫
‖x− xi‖I(xi|x)p(x)dx+∑N

i=1 λi
[
qi −

∫
p(x)I(xi|x)dx

]
s.t.

∑N
i=1 I(xi|x) = 1, ∀x,

I(xi|x) ≥ 0, ∀i ∈ [N ],∀x.

The sup-inf objective function also writes

supλi
infI(xi|x)

∫ ∑N
i=1(‖x− xi‖ − λi)I(xi|x)p(x)dx+∑N

i=1 λiqi.

Now we recall the physical meaning of I(xi|x) from perspec-
tive of optimal transport: it denotes the proportion of p(x) to
be moved to xi; i.e., I(xi|x) are weights. As a result, we have

mini{‖x−xi‖−λi} ≤
∑N
i=1(‖x−xi‖−λi)I(xi|x), ∀x,

where I(xi|x) = 1 for the i letting the equality strictly
hold, and I(xi|x) = 0 otherwise. The above inequality holds
because the weighted mean of a vector is no less than the
minimum element in this vector. This gives the dual problem

sup
λi

∫
min
i∈[N ]
{‖x− xi‖ − λi}p(x)dx+

N∑
i=1

λiqi.

Note that the strong duality holds because the primal optimiza-
tion problem is convex, and the relative interior point p(xQ)
satisfies the Slater’s condition: when p(xP) := p(xQ), the
optimal solution I(xi|xi) = 1 and I(xi|xj) = 0,∀j 6= i.
Since the value of I(xi|x) is either one or zero, all p(x)
near xi are moved to xi, and the cumulative at xi is qi
(n.b.,

∫
I(xi|x)p(x)dx = qi). This implies a region-partition

operation: the sub-region Ci is defined by such a set of x that
satisfies ‖x − xi‖ − λi ≤ ‖x − xj‖ − λj , ∀j 6= i. In other
words,

∫
Ci
p(x)dx = qi, ∀i ∈ [N ]. �



2

APPENDIX C
PROOF OF THEOREM 3

We first consider the case when θ > 0. Let g(x,λ) :=
mini∈[N ]

{
‖x− xi‖ − λi

}
. The Lagrange dual problem is

min
v0≥0,v1

max
p(x)

∫
−p(x) ln p(x)dx+ v0·{

θ −max
λ

[∫
p(x) min

i∈[N ]

{
‖x− xi‖ − λi

}
dx+

N∑
i=1

qiλi

]}

+ v1

[
1−

∫
p(x)dx

]
= min
v0≥0,v1

max
p(x)

min
λ

v0 ·

(
θ −

N∑
i=1

qiλi

)
+ v1+∫

−[ln p(x) + v0g(x,λ) + v1]p(x)dx.

For every two bounded functions f1 and f2 that have the
same support, min(f1 + f2) ≥ min f1 + min f2. Therefore,
it is easy to verify that the objective function is convex in
terms of λ and concave in terms of p(x) by the original
definitions of convexity and concavity. Since the objective
function is concave and constraint-free in terms of p(x),
we use the varitional method to maximize it over p(x).
Let L[p(x)] :=

∫
−[ln p(x) + v0g(x,λ) + v1]p(x)dx be a

functional of p(x). The variation of L[p(x)] is

δL[p(x)] =
∂L[p(x) + εh(x)]

∂ε

∣∣∣∣
ε=0

=

∫
− [ln p(x) + 1 + v0g(x,λ) + v1]h(x)dx,

where h(x) ∈ L1 is an arbitrary function.
Let δL[p(x)] = 0 and according to the fundamental lemma

of calculus of variations, we have

[ln p(x) + 1 + v0g(x,λ) + v1] ≡ 0,

almost everywhere. This gives the form of p(x) in (16).
Substituting p(x) back into the objective of the Lagrange dual
problem gives (17). The strong duality holds because (15)
is concave and Qx is a relative interior point at which the
inequality constraint in (15) is strictly satisfied (due to θ > 0)
and the equality constraint in (15) simultaneously holds (i.e.,
the Slater’s conditions are met).

When θ = 0, the gradient in (19) vanishes if and only if
Px = Qx. Therefore, (16) and (17) also work for θ = 0. In
summary, this theorem works for all θ ≥ 0. �

APPENDIX D
PROOF OF LEMMA 2

This lemma is a special case of [62, Theorem 1.3]. One
can also prove it using the standard Lagrange dual theory (cf.
Appendix B). We do not give details due to necessity. �

APPENDIX E
PROOF OF THEOREM 4

The proof is straightforward by writing the Lagrange dual
problem and differentiating with respect to Pij . The strong
duality holds: (25) is concave and {P 0

ij}∀i,∀j is assumed to
be a relative interior point satisfying the Slater’s conditions.
In the special case when M = N , and Px and Qx have the
same support, P 0

ij can be constructed as follow:

P 0
ij =

{
qi, if i = j,
0, otherwise,

which is resulted from letting Px := Qx. In a general case
when M 6= N or they have different supports, to guarantee
the existence of P 0

ij , we must let θ be strictly larger than

min
Pij

N∑
i=1

M∑
j=1

‖xi−xj‖·Pij over all Pij such that
∑M
j=1 Pij =

qi, ∀i ∈ [N ]. Note that unlike Theorem 3, we additionally
require the existence of P 0

ij . This is because the reference
distribution Qx in this case is no longer guaranteed to be a
relative interior point that satisfies the Slater’s conditions. �

APPENDIX F
PROOF OF THEOREM 6

If θ = 0, the maximum entropy distribution solving (34) is
q itself. Below discusses the case when θ > 0. The Lagrange
dual problem of (34) is

min
λ0≥0,λ1

max
pi

∑N
i=1−pi ln pi

+λ0 ·
[
θ −

∑N
i=1 pi ln (piqi )

]
+λ1 ·

[
1−

∑N
i=1 pi

]
.

It is concave, smooth, and constraint-free with respect to pi.
Therefore, the optimal solution of pi is obtained by the first-
order optimality condition, i.e.,

−(λ0 + 1) · [ln(pi) + 1] + λ0 ln(qi)− λ1 = 0.

This gives (35). Substituting (35) back into the objective of the
Lagrange dual problem, we have (36). Since (34) is concave,
and q is a relative interior point in the feasible region of (34)
such that the inequality is strictly satisfied (due to θ > 0) and
the equality is met, the strong duality holds due to the Slater’s
condition. Namely, if λ0 and λ1 solve (36), pi in (35) solves
(34). When θ = 0, the gradient (37) vanishes if and only if
p = q; i.e., (35) and (36) also work for the case when θ = 0.
In summary, this theorem works for all θ ≥ 0. �

APPENDIX G
MAXIMUM ENTROPY DISTRIBUTIONS

A. Continuous Maximum Entropy Distribution Using Wasser-
stein Distance

We consider a two-dimensional continuous rectangular re-
gion [0, 1]×[0, 1]. Let x be a 2-dimensional prior state particle:
x1 denote the horizontal axis and x2 the vertical axis. Suppose
the reference discrete prior state distribution q is supported on
six points, which are randomly sampled from the rectangle.



3

(a) Optimal Partition. (b) Maximum Entropy Distribution.

Fig. 7. Optimal partition and maximum entropy distribution. The whole rectangular region is partitioned into six sub-regions. Red-filled circles in (a) indicate
the supports of the reference distribution q. Peaks in (b) correspond to the the supporting points of q.

TABLE IV
THE REFERENCE DISTRIBUTION

x1 x2 x3 x4 x5 x6

Points 0.5007 0.2397 0.7338 0.7065 0.3739 0.4450
0.8763 0.1513 0.0323 0.6066 0.1581 0.4139

Weights 0.0583 0.2695 0.0340 0.3496 0.1453 0.1433

Their weights are also randomly determined. The points and
their weights are displayed in Table IV.

We use Theorem 3 and its corresponding projected gradient
descent method to find the continuous maximum entropy dis-
tribution. The uncertainty budget θ is set to θ := 0.025 (only
for a possible demonstration; other values also applicable).
In the projected gradient descent procedure, the step size
α := 0.05 and the maximum allowed iteration steps S := 500.
The results are shown in Fig. 7. The Monte Carlo integration
method is used to evaluate integrals in (19), (20), and (21);
for every Monte Carlo sample x, it belongs to Ci if

‖x− xi‖ − λi ≤ ‖x− xj‖ − λj , ∀j 6= i.

B. Discrete Maximum Entropy Distribution Using Kullback-
Leibler Divergence

The reference distribution q and the induced maximum
entropy distribution p are displayed in Table V and Fig. 8. p is
calculated by Theorem 6. Since they have the same support set,
we do not explicitly demonstrate what the particles xi are. The
uncertainty budget θ is set to θ := 0.0075 (only for a possible
demonstration; other values also applicable). In the projected
gradient descent procedure, the step size α := 0.05 and the
maximum allowed iteration steps S := 500. From Table V
and Fig. 8, we can see that p are more balanced than q: the
minimum of p is larger than that of q (when i = 4), while
the maximum of p is smaller than that of q (when i = 2).

C. Discrete Maximum Entropy Distribution Using Wasserstein
Distance

We let the reference discrete distribution q explicitly be a
likelihood distribution of one (worst-case) prior state particle

TABLE V
THE REFERENCE DISTRIBUTION AND ITS INDUCED MAXIMUM ENTROPY

DISTRIBUTION (USING KULLBACK-LEIBLER DIVERGENCE)

x1 x2 x3 x4 x5 x6

q 0.1993 0.2907 0.0974 0.0492 0.1505 0.2128
p 0.1934 0.2492 0.1196 0.0756 0.1602 0.2021

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 8. The maximum entropy distribution p (left bar at each i) induced by
the reference distribution q (right bar at each i) using the Kullback-Leibler
Divergence.

x. Suppose q and its induced maximum entropy distribution p
have different support sets, as displayed in Fig. 9. The support
set {yr|x}r∈[R] of q consists of particles propagated from a
2-dimensional nonlinear measurement equation{

yr1 = | sin (x1 + x2 + vr1)|,
yr2 = | cos (ex1×x2+vr2 )|, ∀r ∈ [4]

where x := [x1, x2]T := [0, 0]T is the fixed prior state
particle, and measurement noises vr1 and vr2 are sampled from
a uniform distribution U [0, 1]. The support set of p, however, is
constructed by five uniformly sampled points (i.e., green-filled
squares No. 1 ∼ 5) and a new measurement (i.e., green-filled
square No. 6). Randomly setting the reference distribution

q := [0.3700, 0.3194, 0.0610, 0.2496]T ,

then the induced maximum entropy distribution p is given as

p = [0.2641, 0.1272, 0.3440, 0.2513, 0.0071, 0.0064]T ,
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where p is obtained by Theorem 5. The uncertainty budget
θ is set to θ := 0.325 (only for a possible demonstration;
other values also applicable). In the projected gradient descent
procedure, the step size α := 0.05 and the maximum allowed
iteration steps S := 500. As expected, although the support
sets are different, we can still calculate the weights of new
supporting points of p, and the worst-case likelihood of the
new measurement is evaluated as 0.0064. This small-valued
likelihood result coincides with our intuition because the new
point No. 6 is far away from the supports (i.e., red-filled
circles) of q.

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1

23

4

1

2

3

4

5

6

Fig. 9. The maximum entropy distribution p induced by the reference
distribution q using the Wasserstein distance. Red-filled circles are supports
of q, while green-filed squares are supports of p.

Alternatively, we may suppose the support set of p is
constructed by the union of the support set of q and the
new measurement. The supporting points of q are uniformly
sampled from [0, 1] × [0, 1]. We have the results in Table
VI, in which y5 is a new measurement uniformly sampled
from [0, 1]× [0, 1] as well. The uncertainty budget θ is set to
θ := 0.01 (only for a possible demonstration; other values also
applicable). In the projected gradient descent procedure, the
step size α := 0.05 and the maximum allowed iteration steps
S := 500. From Table VI, it can be seen that the likelihood
(of the associated worst-case prior state particle) at this new
measurement is 0.0260.

TABLE VI
THE REFERENCE DISTRIBUTION AND ITS INDUCED MAXIMUM ENTROPY

DISTRIBUTION (USING WASSERSTEIN DISTANCE)

y1 y2 y3 y4 y5

Points 0.4314 0.6146 0.0059 0.5459 0.6206
0.5779 0.2699 0.8958 0.1993 0.3924

Weights (q) 0.3438 0.1316 0.3191 0.2055 �
Weights (p) 0.3372 0.1327 0.3191 0.1850 0.0260


	[3] TSP
	Supplementary
	Introduction
	Problem Formulation
	Find Maximum Entropy Distributions
	Solutions Using Moments-Based Similarity
	Solution to (7)
	Solution to (8)

	Solutions Using Wasserstein Distance
	Solution to (7)
	Solution to (8)

	Solutions Using –Divergence
	Solution to (8)

	Comparisons for the Three Statistical Similarity Measures
	Projected Gradient Descent Algorithm for Maximum Entropy Problems

	Distributionally Robust State Estimation Framework for Nonlinear Systems
	Generate Worst-Case Prior State Particles
	Evaluate Worst-Case Likelihoods
	Outlier Treatment
	Overall Method
	Computational Burden
	Size of Ambiguity Set

	Experiments
	A Time Series Example
	A Target Tracking Example

	Conclusions
	References
	Biographies
	Shixiong Wang

	Appendix A: On Model Uncertainties
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Theorem 3 
	Appendix D: Proof of Lemma 2
	Appendix E: Proof of Theorem 4
	Appendix F: Proof of Theorem 6
	Appendix G: Maximum Entropy Distributions
	Continuous Maximum Entropy Distribution Using Wasserstein Distance
	Discrete Maximum Entropy Distribution Using Kullback-Leibler Divergence
	Discrete Maximum Entropy Distribution Using Wasserstein Distance




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




